

Chapter 7: Photosynthesis
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Photons


• Packets of light energy


• Each type of photon has fixed amount of 
energy


• Photons having most energy travel as 
shortest wavelength (blue-violet light)
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Visible Light 


400 450 500 550 600 650 700


• Wavelengths humans perceive as different 
colors


• Violet (380 nm) to red (750 nm) 


• Longer wavelengths, lower energy







Pigments


• Colors you can see are the wavelengths not 


absorbed 


• These light catching particles capture energy 


from the various wavelengths.







Variety of Pigments 


Chlorophylls a and b


Carotenoids - orange


Anthocyanins - purple/red


Phycobilins - red


Xanthophylls - yellow
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Fig. 7-3a, p.109


Pigments







Fig. 7-3b, p.109


Pigments







Fig. 7-3c, p.109
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Fig. 7-3e, p.109


http://www.youtube.com/watch?v=fwGcOg
PB10o&feature=fvsr



http://www.youtube.com/watch?v=fwGcOgPB10o&feature=fvsr

http://www.youtube.com/watch?v=fwGcOgPB10o&feature=fvsr





Fig. 7-3e, p.109


Pigments







Pigments in Photosynthesis


• Bacteria


– Pigments in plasma membranes


• Plants


– Pigments and proteins organized in chloroplast 
membranes







T.E. Englemann’s Experiment 


Background  


• Certain bacterial cells will move 
toward places where oxygen concentration is 
high


• Photosynthesis produces oxygen







T.E. Englemann’s Experiment







Fig. 7-5, p.110


T.E. Englemann’s Experiment







Linked Processes


Photosynthesis


• Energy-storing pathway 


• Releases oxygen


• Requires carbon dioxide


Aerobic Respiration


• Energy-releasing 
pathway


• Requires oxygen


• Releases carbon dioxide







Photosynthesis Equation


12H2O + 6CO2
6O2 + C2H12O6 + 6H2O


Water Carbon 
Dioxide


Oxygen Glucose Water


LIGHT ENERGY


In-text figure
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Chloroplast Structure
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inner membrane 
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Fig. 7-6, p.111
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Where Atoms End Up


Products 6O2 C6H12O6 6H2O


Reactants 12H2O 6CO2







Two Stages of Photosynthesis
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Light-Dependent Reactions


• Pigments absorb light energy, give up e-, 


which enter electron transfer chains


• Water molecules split, ATP and NADH form, 


and oxygen is released


• Pigments that gave up electrons get 


replacements
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Arrangement of Photosystems
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Photosystem Function: Harvester 
Pigments  


• Most pigments in photosystem are harvester 
pigments


• When excited by light energy, these pigments 
transfer energy to adjacent pigment 
molecules


• Each transfer involves energy loss 







Photosystem Function: Reaction 
Center 


• Energy is reduced to level that can be 
captured by molecule of chlorophyll a


• This molecule (P700 or P680) is the reaction 
center of a photosystem


• Reaction center accepts energy and donates 
electron to acceptor molecule  







Electron Transfer Chain


• Adjacent to photosystem 


Acceptor molecule donates electrons from 
reaction center


• As electrons pass along chain, energy they 
release is used to produce ATP  







Pigments in a Photosystem


reaction center 







Cyclic Electron Flow


• Electrons 


– are donated by P700 in photosystem I to acceptor 


molecule


– flow through electron transfer chain and back to 


P700


• Electron flow drives ATP formation


• No NADPH is formed







Cyclic Electron Flow
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Noncyclic Electron Flow


• Two-step pathway for light absorption and 


electron excitation


• Uses two photosystems


• Produces ATP and NADPH


• Involves photolysis - splitting of water







Machinery of 
Noncyclic Electron Flow
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Chemiosmotic Model 
of ATP Formation


• Electrical and H+ concentration gradients are 
created between thylakoid compartment and 
stroma


• H+ flows down gradients into stroma through 
ATP synthesis


• Flow of ions drives formation of ATP







Chemiosmotic Model for ATP 
Formation
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Light-Independent Reactions


• Synthesis part of 
photosynthesis


• Can proceed in the dark


• Take place in the stroma


• Calvin-Benson cycle







Calvin-Benson Cycle  


• Overall reactants


– Carbon dioxide


– ATP


– NADPH


• Overall products


– Glucose


– ADP


– NADP+
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The C3 Pathway


• In Calvin-Benson cycle, the first stable 
intermediate is a three-carbon PGA


• Because the first intermediate has three 
carbons, the pathway is called the C3 pathway







Photorespiration in C3 Plants


• On hot, dry days stomata close


• Inside leaf 


– Oxygen levels rise


– Carbon dioxide levels drop


• Rubisco attaches RuBP to oxygen instead of 
carbon dioxide


• Only one PGAL forms instead of two







Fig. 7-11a1, p.116
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C4 Plants 


• Carbon dioxide is fixed twice


– In mesophyll cells, carbon dioxide is fixed to form 


four-carbon oxaloacetate  


– Oxaloacetate is transferred to bundle-sheath cells


– Carbon dioxide is released and fixed again in 


Calvin-Benson cycle







Fig. 7-11b1, p.117


C4 Plants







upper


epidermis


mesophyll


cell


bundle-


sheath cell


lower


epidermis


Basswood leaf, cross-section.


C4 Plants







oxaloacetate


malate


C4 


cycle


pyruvate


CO2


12 PGAL 


10 PGAL 


2 PGAL 


1 sugar


RuBP Calvin-
Benson 
Cycle


Carbon fixed in 
the mesophyll 
cell, malate 
diffuses into 
adjacent bundle-
sheath cell


In bundle-sheath 
cell, malate gets 
converted to 
pyruvate with 
release of CO2, 
which enters 
Calvin-Benson 
cycle


12 PGAL 


PEP


Stomata closed: CO2 can’t 
get in; O2 can’t get out


Fig. 7-11b3, p.117


C4 


Plants







CAM Plants


• Carbon is fixed twice (in same cells)


• Night 


– Carbon dioxide is fixed to form organic acids


• Day


– Carbon dioxide is released and fixed in Calvin-


Benson cycle







Fig. 7-11c1, p.117


CAM Plants







Fig. 7-11c2, p.117
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Summary of Photosynthesis


Figure 7-14
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Photoautotrophs 


• Capture sunlight energy and use it to carry out 
photosynthesis


– Plants


– Some bacteria


– Many protistans
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Photoautotrophs 







Satellite Images Show Photosynthesis
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Figure 7-13
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Fig. 7-15, p.121
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